• L'Evoluzione del Maxival® Clicca qui per leggere la news.

  • TOP SPONSOR L.R. VICENZA VIRTUS Clicca qui per leggere la news.

  • UNA CORSA DA RECORD Clicca qui per leggere la news.

  • PARIS AIR SHOW LE BOURGET, JUNE 17TH - 20TH Clicca qui per leggere la news.

  • I TRATTAMENTI TERMICI - "INOSSIDABILE 216" Clicca qui per leggere la news.

CMX/DE- Martensitici

Scheda acciaio

Scegli l'unità di misura in cui visualizzare i dati:

Valbruna Grade

CMX/DE

Steel type

Martensitic Stainless Steel

Description of material

CMX/DE is a high carbon martensitic stainless steel designed to supply high hardness. Because of its high hardness after heat treatment, CMX/DE is used in applications where this characteristic is the most important, together with a moderate corrosion resistance.

Applications

All applications where high hardness is indispensable such as dental and surgical instruments, pocket and kitchen knives, valve seats, parts of pumps, and wear resistant devices. This grade is widely used in the production of sharp blades in professional cutlery manufacturing and where the blade’s edge is an important characteristic. This is obtained by a different balance of Cr-C contents if compared to the high Chromium/Carbon grades such as CMXC and similar ones. CMX/DE is not normally used in table knives due to a lower corrosion resistance compared to VAL 2 series or VAL3CT.

Melting practices

EAF+AOD

Corrosion resistance

CMX/DE has its maximum corrosion resistance when in the hardened + low temperature tempered condition and with its maximum hardness. Its use in the annealed condition or any other situation able to reduce the surface hardness and in environments containing Chloride, should be avoided. CMX/DE has good corrosion resistance in mild environments such as fresh water, industrial and rural atmospheres, petroleum products, gasoline fuel oil and alcohol. It should be noted that this grade, as for every kind of stainless steel, surfaces should be free of contaminant and scale, heat tint, and passivated for optimum resistance to corrosion.

Cold working

In the annealed condition, this grade is not suitable for cold forming operations such as cold heading or up-setting. Nevertheless, a moderate cold formability could be obtained after a long lasting annealing and very slow cooling in the furnace. It should be pointed out that CMX/DE is prone to surface decarburization: a protective atmosphere should be considered in the heat treatment of finished pieces.

Machinability

In the annealed condition CMX/DE has a good machinability similar to low-medium Carbon martensitic type 400 series steels, but better than CMXC. It’s important to know that the productivity gain depends on the type of machines used, the kind of tools used and their geometry, cutting fluids and the kind of machine operations on the pieces produced. Grinding and polishing of hardened + tempered material at maximum values of hardness must be carried out with great care in order to avoid the overheating of the surface of the piece resulting in poor corrosion resistance and/or grinding cracks.

Weldability

This process is very risky and shouldn’t be a cycle of production to apply. Different and alternative choices should be evaluated to join parts. In any case, if welding process were required, a preheating is mandatory and the part must be maintained at temperature and followed by immediate annealing. Fillers of the same compositions can be used to obtain mechanical properties close to that of the base metal. Alternatively, austenitic fillers may be used considering an inevitable reduction of these properties.

Hot working

Blooms and ingots require a suitable preheating to avoid cracks and a slow cooling in furnace after forging. Overheating must always be avoided in order to reduce the risk of internal bursts. An improper cooling could result in stress cooling cracks. Large forgings and large cross – section shapes should be left to cool until their core reaches room temperature and, then, immediately, heat treated. A right and suitable heat treatment of pieces after the forging process creates a structure with no or little retained austenite avoiding delayed cracks.

Heat treatment

CMX/DE should be double tempered after hardening in order to reduce or avoid retained austenite obtaining high values of hardness. Alternatively, a cryogenic treatment after hardening and tempering can be carried out but this must always be followed by another tempering. This treatment is not normally used in cutlery production where a single tempering should be sufficient.

Scroll to top